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Abstract

This report describes the state space model which forms the core technology of
an integrated autonomous navigation system incorporating perception, control,
and position estimation called RANGER. The high speed local navigation prob-
lem is formulated as an optimal control problem in state space. This report con-
centrates on the trajectory tracking, obstacle avoidance and sensor stabilization,
aspects of the system. These algorithms form the basis of RANGER's Controller
object.
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1. Introduction
RANGER is an acronym for Real-time Autonomous Navigator with a Geometric Engine. This
report describes the "geometric engine" part of RANGER - the state space model, and the
associated control algorithms.

A new approach to the high speed autonomy problem is presented which is based fundamentally
on the state space representation of a multi-input multi-output linear system and the problem
analysis presented in [28]. The system closes the overall perceive-think-act loop for a robot vehicle
at relatively high update bandwidth and incorporates both somatic and environmental feedback.

A high fidelity feedforward actuator dynamics and terrain following model is introduced which
formulates the local navigation problem as an optimal control problem. Feedforward solves the
historically significant clothoid generation problem trivially. C space combinatoric explosion is
solved by planning in actuation space. The system feeds steering commands to the state space
model, and it uses the terrain map to generate the near clothoid response of the vehicle naturally
and directly with none of the algorithmic sensitivities of classical solutions. Obstacle avoidance,
path planning, path generation, and path following algorithms are introduced which are based on
the state space model. These algorithms are stable and reliable at 10 mph on rough terrain and
promise to maintain stability at 20 mph and above.

The system is concerned with the high level coordinated control problem. It is not concerned with
the specific control of actuators themselves. Further, while it can accept a specification of a
strategic goal, such as a path to follow, or a direction to prefer, it cannot generate its own strategic
goals. Therefore, it solves the local planning problem for autonomous vehicles. The local planning
problem includes obstacle avoidance, and goal seeking.

The system can' be classified as an intelligent, predictive controller for autonomous vehicles. It is
intelligent because it uses range images that are generated from either a laser rangefinder or a stereo
triangulation rangefinder in order to perceive the immediate environment of the vehicle. It is
predictive because it reasons based on its knowledge of its own capability to react to hazards in real
time as well as the transfer function of the vehicle which relates motion commands to the response
to those commands. This transfer function is concerned with the geometry, or kinetics, of vehicle
motion. There is no explicit representation of force in the system, so it is basically a geometric one.

The system is a state space controller because it explicitly forms an expression of the vehicle
dynamic state vector in order to predict the hazard signals upon which decisions are based. The
process which converts terrain shape and command inputs into the associated response of the
vehicle is a constrained multidimensional differential equation.

Although the word 'reasons' is used above, the system takes a traditional control systems view
rather than an artificial intelligence view of the autonomous navigation problem. The path planning
problem is regarded as trivial due to the nonholonomic constraint of Ackerman steering. The
reason for this is that the region in space that the vehicle can physically reach which is also within
the usable field of view of a sensor decreases very rapidly in size as the speed increases.

As of this writing, the system has achieved 15 Km excursions, average speeds of 15 Km/hr and
intermittent speeds of 20 Km/hr and all of these achievements are unprecedented. It owes it surcess
to extensive analysis of the problem it is intended to solve.
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L1l Hi h SIed AutmM
One of the unavoidable realities of safe, high speed autonomy, is that any vehicle requires
significant time and space to react to external events. With vehicle and computational latencies
largely fixed, the only practical avenue available is to actively search for hazards at increasing
distance from the vehicle. This implies inci.ased demands on sensor resolution and overall system
accuracy, and increased sensitivity of planning decisions to small model and sensory errors because
the system cannot wait until geometry is more favorable in its assessment of hazards. A real-time
autonomous navigator actively manages its field of regard instead of its reaction time because the
latter cannot be feasibly altered enough to make a difference.

Unavoidable system latencies and limited maneuverability take on a new level of significance. A
high speed vehicle is committed to travelling a certain trajectory for a significant distance before
any decisions made in the planner can be enacted in hardware. Further, dynamics and actuator
response limit the ability of the vehicle to significantly alter its trajectory after the actuator
commands are received. These hard physical limits on braking and steering imply that there is little
point wasting computational bandwidth assessing hazards in regions where the vehicle is either
already committed to go or where it physically cannot go. The size of the region that the system
truly has an option of traversing rapidly decreases in size as speeds increase. This of course implies
a reduced ability to avoid obstacles, but that is a fundamental physical cost of higher speeds.
Planning algorithms which directly incorporate knowledge of such dynamics enjoy significant
performance improvements. A control systems view of a high speed vehicle leads to complete
elimination of the historically significant problems of C space combinatoric explosion and
nonholonomically constrained path generation. The problem remains one of search but physical
dynamics amounts to an overwhelming constraint. Of all possible trajectories in C space, only a
relative handful are both dynamically feasible and spatially distinct enough to warrant
consideration.

1. Commentary
The traditional hierarchical view of the problem arises perhaps from the axioms of structured
programming from software engineering and the artificial intelligence view of hierarchical
planning. In this view, planners generate command inputs to controllers which do their best to
follow them. While these are excellent tools, there is a point at which hierarchy becomes
counterproductive when it is mapped onto contemporary computers and contemporary vehicles. In
a real time context, response time and throughput requirements are absolute metrics of success and
tightly coupled embedded systems are the traditional practical solution to such problems.

A basic assumption of the hierarchical view is that controllers are empowered to execute
commands given to them. For the problem solved here, this is not the case. Indeed, there is very
little choice available to a vehicle controller about what the vehicle will do over the short term, and
any planner needs to incorporate this knowledge into its model of the vehicle-environment
interaction.

When the point is reached when planners must incorporate explicit high fidelity feedforward
models of vehicle dynamics and system latencies, the traditional hierarchy has, in fact, been broken
because the planner has become a feedforward controller. The question becomes not what will I
tel the vehicle to do, but rather, how will it respond to this request. A HMMWV is a massive
system and its actuators can only generate propulsive and steering forces which are a very small
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fraction of the total inertial force on the vehicle. Hence, the vehicle goes where it wills and a
hierarchical planner-controller approach to the problem of controlling a HMMWV at high speed is
an indirect attempt to defy physics.

The only model of a high speed conventional vehicle of practical validity in autonomy is a coupled,
constrained, nonlinear, multidimensional differential equation. Idealized kinematic models of
vehicle steering are a major cause of the brittleness of kinematic arc based planners which has not
been generally recognized.
1.3 AcknowildWmen

Barry Brumitt and the author investigated the impact of steering delays on the planning and path
generation problems respectively prior to this work. Based on this work, and the precedent of
FASTNAV, the idea of generalizing steering dynamics feedforward to a complete state space model
ultimately emerged. Barry did initial work on the extent of the dynamically feasible subset of C
space. The C space planner constructed by Barry Brumitt and Tony Stentz provided the initial
impetus for the feedforward simulator.

R. Coulter was the first to suggest that an optimal control approach to propulsion was worth
investigating. R educated me on the need for gravity compensation in propulsion control and
collaborated with me in a long joint project to attempt to learn the technological basis of position
estimation.

Omead Amidi constructed the CMU vehicle controller which continues to be a central element of
all research on the vehicle. Omead first suggested that a tightly coupled real-time implementation
of the high level perceive-think-act loop would ultimately be necessary at high speed.

The admissability modules evolved from earlier versions that were designed and constructed by R
Coulter and Tony Stentz, and later refined by George Mueller. Earlier still, the Hughes ALV
pioneered the field itself with a similar approach.

This system can be considered to be a natural evolution of the ideas of Tony Stentz which formed
the basis of the first full geometry off road navigator at CMU since the system implemented earlier
by Martial Hebert. This software system was implemented by Barry Brumitt, R Coulter, Al Kelly,
Bill Burky and George Mueller under the direction of Tony Stentz.

The only reason that the system discussed here could have been conceived at all was the
groundbreaking work of this team in boldly attempting the impossible and along the way
identifying the issues which affect high speed performance. Portions of the original code still
survive in modified form. The system remains consistent with Tony's original concept of a high
speed off road navigator based on high fidelity physical models.

Larry Mathies and Todd Litwin of the Jet Propulsion Labs provided the opportunity to integrate the
system with a wide field of view stereo ranging system which provided an excellent forcing
function for the software engineering of the code and opportunities to engineer the system to accept
a generalized suite of environmental senscr inputs.

Larry educated me on aspects of the physics of remote sensing and his stereo algorithm. Todd
collaborated with me on the software engineering of the code. Indirectly, Don Gennery told me the
relationship between least squares suspension models and the minimum potential energy principle.
Tam Nguyen explained the JPL propulsion controller to me.
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14 Differences from Important Historical Systems
RANGER differs from all historical precedents known to the author in two ways. First, the system
explicitly evaluates vehicle safety in terms of timing, speed, resolution, and accuracy in real-time
and employs many adaptive mechanisms which optimize performance. In particular, explicit
computation of stopping distance and required minimum throughput is performed and these
considerations and others form the basis of an elegant adaptive perception mechanism which
makes unprecedented vehicle speeds possible. Second, the system uses relatively high fidelity
feedforward models of system dynamics and terrain following and is configured as a tightly
coupled controller.

This section summarizes the capabilities of some of the most significant historical off road systems.
The list is not exhaustive, nor is it a complete discussion of each system provided. Unfortunately,
little has been published to date on some systems, and available publications do not address some
of the issues investigated here.

1.4.1 Hughes ALV

The Hughes Autonomous Land Vehicle [9] was one of the first off-road mobile robots ever
developed. The system generalized the notion of an obstacle to include any vehicle configuration
that is unsafe. This allowed navigation over terrain of any surface shape. Based on the ERIM
rangefinder and a highly terrainable vehicle, it achieved speeds up to 3.5 km/hr, over distances
exceeding 500 meters, and running times averaging 20 minutes.

The speed of this vehicle was limited by many factors including the complexity of the perception
and planning processing, and the speed of communication with off board processing. Robustness
was limited by low fidelity modelling of steering constraints, poor terrainability and
maneuverability of the vehicle on wet muddy soil, inability to detect small, but dangerous obstacles
(steel fence spikes), constrained excursion due to line of sight radio communications, local
planning minima and bugs in the high level planner.

The system discussed here differs from the ALV in its real-time minimalist approach to the
problem. The adaptive perception algorithms are considerably faster than the Connection Machine
implementation of the ALV algorithms. It also discards the costly energy minimization
interpolation scheme of the ALV in favor of a temporal interpolation of the hazard vector signal.
The system also differs in its high speed design incorporating a differential equation state space
model.

1.4.2 JPL's Robby

The JPL rover [46] was the first system to drive autonomously across outdoor terrain using dense
stereo data, rather than sonar or laser rangefinder data. This system was demonstrated in a 100
meter cross-country demo in Sept. 1990. It has achieved an average speed of 100 meters in 4
hours (7.0 mm/sec) in a start/stop mode. The total elapsed time in this case is not very meaningful,
since it includes downtime while the system was being debugged and numerous stops to evaluate
performance 1 . The vehicle speed was mechanically limited to 4 cm/sec and off board
communication throughput was limited. Cycle times were on the order of 30 secs for planning and
10 secs for perception. Passive stereo was used in the perception system. Later runs were able to

1. Larry Mathies, personal communication.
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achieve speeds of 4 cm/sec.

The system discussed here differs from Robby in that it attempts both wide excursion and high
speed. It is difficult to assess the degree to which computer evolution alone has made this possible.

1.4.3 JPL's Rocky Series

The Rocky series of Microrovers [43] are small scale prototypes intended as testbeds for simple
behavior based control systems. They are intended to produce a flight rover for the MESUR
pathfinder mission of 1996. These robots are tested in the context of operations in the vicinity of a
planetary lander, so large traverse distance or high speed are not being pursued.

The system discussed here differs from the Rocky series in its deliberative approach to autonomy
and its attempt to achieve wide excursions at higher speeds. It borrows the minimalist configuration
principle in an attempt to optimize real time performance.

1.4.4 CMU's FastNav

The FastNav project concentrated on achieving high vehicle speeds and robust obstacle detection
on fairly benign terrain. The Cyclone single scanline laser rangefinder was used as the basis of the
perception subsystem. It was used to check a global pat" for discrete obstacles, such as trees, rocks,
and ditches, and stop accordingly. Obstacle detection was based on detecting deviations from a flat
world. Path tracking used a position estimation system based on inertial navigation, dead
reckoning, and the GPS satellite navigation system.

FastNav [41] made use of simple tire-soil interaction and vehicle dynamics models to navigate on
locally-flat terrain with sparse obstacles. Path tracking was demonstrated at 30 km/hr and obstacle
detection was demonstrated at 3 m/s.

Some of the reliability problems that were demonstrated include high sweep rates of the Cyclone
scanner due to vehicle pitching, and poor accuracy of the inertial navigation system. Early
problems with instability of the tracking algorithm were fixed by incorporating a first order model
of the steering dynamics into a feedforward compensator. The longest autonomous run was 1
kilometer2.

RANGER borrows heavily from the FASTNAV project in three ways. First, steering dynamics
feedforward is generalized to a complete state space rough terrain model. Second, the mere fact
that such speeds were possible pointed directly to a problem with the way in which nonadaptive
image processing was a major cause of poor real-time performance. The line scanner has been an
important existence proof that the bare throughput requirement at these speeds was far less severe
than it appears to be. Third, the pure pursuit path tracker is an adaptation of the FASTNAV tracker
for rough terrain.

RANGER ah- differs from FASTNAV in that it is a cross country system, not a dirt road system.
Full 3D models are employed and the considerable difficulties of rough terrain drive many aspects
of the design.

2. Much of this is personal communication with Sanjiv Singh and Jay West Existing documentation does not
cover the issues mentioned completely.
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1.4.5 CMU UGV Systems

From September 1990 to the present, CMU researchers have developed two preliminary versions
of autonomous cross country navigators. Both navigators are based on the Highly Mobile Multi-
Wheeled Vehicle (HMMWV). The performance of the both prototypes has been promising when
compared with that of previous systems. Both systems are based on the ERIM laser rangefinder.

The first system [7] is similar in concept to the ALV. It generates a complete geometric description
of the terrain in cartesian coordinates by transforming successive range images. It evaluates
candidate vehicle trajectories by simulating the vehicle state forward in time in order to predict
collisions.

This system was the first to model dynamic constraints on vehicle state in path planning. Path
generation was based on an alternative to the spanning arcs approach of the ALV for path
generation which is theoretically superior in cluttered environments.

Reliability problems for this system are associated with the poor fidelity of elevation maps, cycle
time overruns, and path generation and planning algorithm failures. Nevertheless, this system has
achieved its purpose of advancing the state of the art and serving as an experimental testbed.

The most impressive achievement consists of a test run of five kilometers comprised of some thirty
orbits of the same circular path on substantially flat terrain with a total of less than ten obstacle
avoidance maneuvers. Speed has never exceeded 3 meters per second, and only half of this speed
has been achieved while avoiding obstacles.

RANGER borrows heavily from this system because it is basically the next prototype in this series.
It differs from its predecessor in its adaptive perception algorithms, the efficiency of its
admissability module, its universal 3D models, and it favors a controls feedforward approach over
the cluttered environment search based planner.

More recently, a second group [ 18] have developed a system called Ganesha which processes range
images to recover regions of constant terrain gradient. This system has achieved runs over
distances of 840 meters, at speeds of 2-3 m/s while avoiding natural obstacles, and it has probably
exceeded these results as of this writing.

RANGER differs from Ganesha in that it can be considered to be more of a deliberative system on
the spectrum of such systems because it remembers both vehicle state and environmental state from
cycle to cycle to a higher level of detail than Ganesha does. RANGER is also theoretically superior
to Ganesha on rough terrain at a cost of the extra processing and slower reaction time required to
navigate in a fully 3D world model.

1.4.6 ALVINN

ALVINN is a road following system based on neural networks [39]. Although it solves a different
problem, ALVINN provides a second precedent for the use of feedforward for the purposes of
imparting stability at high speed.

1.4.7 VITA

The Daimler-Benz group have developed impressive road followers based on a control systems
approach to road following. Although a different problem is solved by these systems, the control
approach has been an important precedent.
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L5 Requirements
The design of the system is based on these top level requirements. They are the highest level design
drivers that influence the design to a large extent. Certain of the components would be unjustified
for systems with other requirements such as, for example, slow, or start stop vehicles or
omnidirectional vehicles.

1.5.1 Rough Terrain
Rugged, sparsely vegetated, mostly dry terrain is the target environment within which the vehicle
must navigate safely. A flat world assumption along with discrete obstacle detection is not
considered valid in the target terrain.

1.5.2 Continuous, High Speed
Speeds which approach the speeds at which humans can drive the same terrain (say, 20 mph) are
targetted.

1.5.3 Ackerman Steer Vehide

While the Ackerman steering configuration is not ideal for planning purposes, most large vehicles
intended for human use employ this configuration, so the restriction to this class of vehicles is not
as limiting as it may appear. In any case, the maneuverability of such vehicles is dramatically
different from other alternatives, particularly at speed, and the report will show that efficiency
demands that a special case solution for this class of vehicles be adopted. Nevertheless momentum
and the nonholonomic constraint limits maneuverability of all high speed vehicles, so many of the
results here apply generally.

1.5.4 Robustness

The system is intended for relatively long traverses of suitable terrain. While robustness is difficult
to quantify, it is the intention that reliability be sufficient for routine autonomous excursions of tens
of kilometers over suitably chosen terrain.
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2. Analytical Basis of the Concept
RANGER is an attempt to design an optimal system from a systems perspective. A consistent
requirements analysis was conducted which identifies the interrelationships of requirements and
which attempts to optimize the system performance as a whole. Consistent resolution and accuracy
goals are imposed on the design so that all subsystems are equally well and equally poorly able to
do their respective jobs. In many cases, trade-offs are managed in real time in the code itself.

This approach arose for historical reasons. Earlier versions of the system had no basis for allocating
resources to subproblems so all were optimized at their own level. This led to "near perfect"
perception and planning algorithms which did an excellent job of predicting collisions with hazards
that they were too busy thinking about to do anything about.

The system eliminates the lower levels of control which traditionally attempt to follow a path
provided by a higher level agent because the problem is too coupled to solve by hierarchy. The
system works in actuation space and incorporates feedforward. For this reason, it is effectively a
controller and not a planner.

The system that emerges from these considerations is a unique one. It is a real time control system
which operates on environmental and navigation sensory inputs and incorporates a high fidelity
model of both the plant and the environment. It is tightly coupled and it merges the traditional
hierarchies into one conceptual layer that closes the perceive-think-act loop at high update
bandwidth. The system is based upon a large body of analyses presented in [28]. A brief discussion
of the most significant aspects of the design is presented below.

.I Guaranteed Saet
The system directly implements the policy of guaranteed safety by reasoning in real time about the
four dimensions of safety (i.e. timing, speed, resolution, and accuracy) and adapting its perception
and planning subsystems to comply directly with the need for safety.
2.2 Adaptive Reg~ard

Adaptive Regard is a mechanism for ensuring that the system minimizes the spatial extent of the
region it perceives based on vehicle maneuverability so that speed is maximized without
compromising safety. The principle of adaptive regard is to scan for hazards only in the obstacle
detection zone. This is the region of space that the vehicle still has an option of traversing. The
system implements adaptive regard by adapting its obstacle avoidance behavior to guarantee that
an impulse turn can always be executed should an obstacle be detected.

2. Fidelity Adalve Plannin
This principle surrounds hazards by a small buffer region in actuation space in order to compensate
for any inaccuracies in the computations. It is implemented here as Gaussian filtering of the
steering vote vector.
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2A Feedforward Path Generation

The configuration space of the high speed nonholonomic vehicle is degenerate at high speed and
the attendant clothoid generation problem is impossible to solve in practical terms. The "path
generator" for the system generates, not candidate paths, but candidate command signals expressed
in actuation space (in terms of curvature and speed as a function of time), and uses a high fidelity
simulator to solve the differential equations of motion in order to determine the exact response to
these candidate commands. This strategy has the following advantages:

" The paths generated meet the mobility constraints of the vehicle by construction, so the
difficult and often impossible problem of conversion from C space to A space is completely
avoided. Instead, the reverse process of dead reckoning is used in the simulator. This is a kind
of feedforward.

* The paths coarsely span the entire region of space that the vehicle can reach, so - -, real
alternatives are missed.

2.5 Feedforward State Sfie Controller

The system represents hazards as sampled time signals in a kind of multidimensional hazard space.
The essential obstacle avoidance mechanism is the minimization of an optimal controlfunctional
in this space. Interpolation is performed in time along the vehicle state vector rather than in the
space of the terrain map.

Z& Continuity Assumion

The assumption that important aspects of vehicle maneuverability and system computational
performance will not change significantly from one cycle to the next is called the continuity
assumption. This assumption is used to resolve some of circular issues related to the coupling
between adaptive perception and adaptive regard.

27 Tean Smoothness Assumion

The terrain smoothness assumption is required in order to implement a terrain map
representation of the environment. It is also used to justify the interpolation of small unknown
regions.

2.8 Unknown Hazard Assumption
The unknown hazard assumption involves the belief that large unknown regions in a terrain map
are unnavigable by default. This key assumption permits the system to operate robustly near large
holes or near the edge of a cliff.
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3. Hierarchical Planning and Arbitration
The local minimum problem is perhaps the most serious threat to robustness of any local obstacle
avoidance strategy for autonomous navigation. In order to achieve robust navigation, a sound
strategic plan that avoids these minima is a solution that works well in practice. In order to enhance
robustness, the system supports the input and continuous monitoring of strategic goals.
3.1 Strategic Goal

The system defines a strategic goal which instantaneously may be any one of:

" follow a predefined path
* drive toward a predefined point
* maintain a fixed compass direction
' maintain a fixed curvature

12 Tactical Goal

The tactical goal is to simultaneously avoid all hazardous conditions including:

" tipover
" body collision (high centering)
' wheel collision
* entering unknown terrain

and extensions to other hazards are simple to perform.

1 Arbitrutim
In situations where a hazard is detected which lies in the way of achieving the strategic goal, the
tactical goal will override the strategic one as long as any hazard exists. The output of the steering
arbiter may be very discontinuous if a hazard suddenly appears or disappears and because high
steering rates constitute a hazard by themselves, the steering arbiter output is smoothed to remove
steering discontinuities except when drastic action is called for. That is, the strategic steering output
is smoothed whereas the tactical one is not.

The arbitration scheme might be called aprioriied sort. The principles of this technique are:

* Obstacle avoidance always overrides tracking if it chooses.
* Tracking chooses the best path which obstacle avoidance allows it when it is allowed control.

This approach has the side effect that following of an extended feature will emerge naturally, and
the system will immediately take the opportunity to reacquire the strategic goal if an opportunity
presents itself. While this describes the emergent behavior, the algorithm itself is to:

' sort the votes of the tactical planner using the corresponding strategic votes as the key
' choose the first path in the sorted list which satisfies obstacle avoidance

Effectively, if obstacle avoidance does not care which direction to choose, the strategic planner is
given control. If it does care, it will continually veto the strategic votes in order of strategic
preference until a safe one is presented to it. If no safe path exists, a stop command is issued.
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4. Path Tracking
The only nontrivial aspect of tracking a strategic goal is high fidelity tracking of a convoluted path
over rough terrAin.

4.1 Ada ve Pureursuit
The strategic controller incorporates an adaptive path tracker which is based on the pure pursuit
algorithm. The pure pursuit algorithm has been around for some time [41]. It is basically a
proportional controller formed on the heading error computed from the current heading and the
heading derived from the current vehicle position and a goal point on the path. The goal point is
computed by finding the point on the path which is a predetermined distance from the current
vehicle position. There are many variations possible on the basic algorithm.

cmm

Figure I- Basic Pure Pursuit

Heading is measured at the center of the rear axle. The proportional gain is normalized by the
Iookahead distance L. This can be viewed an adaptive element or, more simply, as a unit
conversion from heading error to curvature. Indeed, the ratio 1err/L is the average curvature
required to reacquire the path at the goal point

A limiter is used which ensures that the curvature is limited at higher speeds to prevent rollover.
Another limiter maintains the angular acceleration below a threshold. These measures ensure
vehicle safety and directly prevent instability at the cost of an inability to track high curvature paths
at high speed. However, vehicle dynamics prevent tracking high curvature paths at high speed

anyway.
Large tracking errors or, equivalently, too short a lookahead distance or too high a gain all result in
servo instability. This a well known problem with pure pursuit which can be addressed with

feedforward.
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A few modifications are introduced to adapt pure pursuit for rough terrain. First, extremely large
tracking errors must be acceptable to the servo without causing instability. This is managed by two
devices indicated in the following figure.

/*

** Adaptive Pure Pursuit
*/

min = HUGE; waypt = close;
(xIyl) while(L23 < L12 + lookahead)

x3 = path-x[way-pt];
y3 = pathy[waypt];
if( L13 < min)

Distance close = waypt;
"1 L12

waypt++;
(x3,

way-pt = close;
Pwhile(L13 < L12 + lookahead)

{(
L 23 (x2,y2) x3 = pathx[way-pt];

y3 = pathy[waypt];
goal-pt = waypt;
I

Figure 2 - Adaptive Pure Pursuit

Instead of using the current vehicle position as the origin of the lookahead vector, the system
maintains a running estimate of the point on the path which is closest to the current vehicle
position. This is done because it is very expensive to search the entire path each iteration. In doing
so, the system is assuming that the vehicle will never have a heading error which exceeds 90
degrees for an extended period of time. This is a monotone arc length assumption. This
assumption completely eliminates the overwhelming computational cost of simpler
implementations of the algorithm.

The lookahead distance is adaptive to the current tracking error - increasing as the error increases
as indicated in the accompanying code fragment. The first while loop is responsible for maintaining
a running record of the close point, point 2. It searches through an arc length window which adapts
to the path tracking error. As the error gets larger, this loop will cause the close point to jump over
high curvature kinks in the path as they become less relevant at the resolution of the tracking error.

The second while loop computes the goal point in an identical manner. It basically moves point 3
forward until it falls outside a circle centered at the vehicle whose radius is the sum of the error
distance and the nonadaptive lookahead. In this way, when an obstacle avoidance maneuver causes
significant path error, the algorithm will search to reacquire the path on the other side of the
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obstacle instead of causing a return to the front of the obstacle.

Notice that under normal circumstances when the vehicle is tracking the path, the close point is at
the vehicle position, the error distance is zero, and the adaptive lookahead is the nonadaptive
lookahead. In plain terms, the algorithm gracefully degenerates to classical pure pursuit when
obstacle avoidance is not necessary.

42 Feedfirward Pure Pursuit
An upcoming section will present a high fidelity feedforward simulator which models many
aspects of vehicle kinetics. A feedforward option in the tracking algorithm incorporates the output
of this simulator into the tracker. The cost of a feedforward simulator must be borne, so an
additional feedforward element in the tracker is available for free. The basic idea is as follows.
First, at each point in the simulation, evaluate the distance from the vehicle to the goal point.
Second, the candidate command which comes closest to the goal point becomes the vote of the
strategic controller. Such an algorithm provides excellent path following in three dimensions over
rough terrain.

The concept is indicated in the following figure. During a high curvature turn at speed, the
feedforward simulator skews the response curves toward the current steering direction.

Note, the vehicle
A ne a pp albo eanana~pen to have

azero tIditong at tro.

Kinatic D i

(Unstable) Fiorward
(Stable)

Figure 3 - Feedforward Pure Pursuit

A kinematic tracker would issue a hard right command in the situation depicted above whereas a
dynamic one would recognize that such a command would actually increase the tracking error. A
dynamic tracker would issue a zero curvature command and would correctly acquire the goal point
as the steering wheel slowly turned toward zero. The following figare illustrates the performance

of the feedforward algorithm relative to the kinematic one.
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Figure 4 - Performance of Feedforward Pure Pursuit

Each graph shows the target commanded trajectory and the actual trajectory followed under the
algorithm used. Both paths are indistinguishable most of the time. Note, however, that the
kinematic tracker goes unstable in the top left figure whereas the feedforward one does not.
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5. Adaptive Regard
The adaptive regard principle can be expressed as follows: There is no need to process data in
regions where:

* the vehicle is already committed to going (dead zone)
- the vehicle cannot go (free zone)
* subsequent images will provide better measurements (beyond detection zone)

because in all cases, there is no useful decision that a planner can make.

In the first case, if an obstacle enters the dead zone, system failure is assured, so they must be
detected and avoided before they get this close. In the second case, processing such data is a
complete waste of resources. In the third case, processing can be postponed until a future cycle.

If the vehicle cannot avoid obstacles at close quarters, not only is there no need for processing
image geometry there, there is also no need for a planner to evaluate safety in its immediate vicinity
in the map. The system planner evaluates trajectory safety only within the planning window. The
algorithm for computing this window based on an impulse turn maneuver is given below.:

/*

** Plan Window
*/

Pmax = speed * treact + rhomin;/* adaptive lookahead */
Pmin = Pmax - imaging-density * speed * cycle_time /* adaptive sweep 1

An impulse turn is a turn from zero curvature to the maximum allowed curvature. It is the
maneuver necessary to avoid a large obstacle without slowing or stopping. The imaging density is
the average requested density of images on the groundplane. It must be maintained above 1.0 at all
times to ensure adequate coverage of the environment. Later, the perception module will map this
planning window into image space to allow it to extract the requested data.
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6. Real Time Latency Modelling
As a real time system, a reliable measurement of time is required for the system to function
correctly. In particular, the system needs to match images with vehicle states which may arrive
intermittently and it needs to remember the commands that were issued to all actuators in previous
iterations of the main control loop because the system cycles faster than the output latencies. This
is accomplished with the following mechanisms.

* all input and output is time stamped
* all input and output is stored in internal FIFO queues
" all sensor latencies are modelled
" all actuator latencies are modelled

It is important to recognize that these FIFO queues do not introduce artificial delay. Their function
is to model delay which already exists in the hardware. Conceptually, all i/o goes through these
queues.

6. Localization of Image Pixels

The smearing of the environment model which arises from incorrect models of the motion of the
sensor during the image digitization process is called the motion distortion problem. All
incoming vehicle state information is stored in a FFO queue until it is needed to process images
which arrive later. The state queue and the time tags are used to effectively register the ray through
every pixel with a unique vehicle pose before its value is converted to world coordinates.

6Z Localization of the Vehi

While temporal registration of images and vehicle positions is a resolution matter, the raw delay of
the vehicle position estimate is a separate accuracy concern. When the system uses the latest
vehicle state as its estimate of position, the error involved in doing so is the velocity times the
latency. Clearly a delay of only one second causes 5 meters of localization error in the vehicle
position at 5 m/s and pretty well guarantees collisions with obstacles solely because the system
does not know how close it is to the obstacle3 . For this reason, an estimate of position sensor
latency is used and fed forward just like any other parameter .

U. Localization of the Feedforward Vehicle

All output commands are stored in a FIFO queue and are used for the next several iterations in
implementing command feedforward. When the system is generating the current command, there
may be quite a few previous commands still en route to the hardware so a proper model must feed
these pending commands into the model before the current one is used and make decisions based
on the last command to go out, because the system still has control over only that current command.

3. 'ibis is an almost intolerable situation, particularly when steering response is added to the picture, and it
argues persuasively for tight system coupling. Tb ignore these issues at 5 m/s it to overestimate obstacle clear-
ance by 5 meters, underestimate the distance required to turn by as much or more, and drive straight into any-
thing in the way. However, the best that can be done is to model the latency if it cannot be reduced.
Roughly speaking, a 2 second delay from image to steering actuator makes 10 m/s speed impossible.
4. This is a practical measure because extant vehicle positioning systems and computing hardware have no
consistent time standard. Ideally, the latency could be simply measured from the current time and the time tag
of the image.
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7. Feedforward Simulation
In order to evaluate safety, the tactical control module computes the response to candidate
commands simulated forward in time until the detection zone is reached. The basic justification for
this approach is an attempt to meet guaranteed response and localization simultaneously. In order
to make sound decisions, the system must know now where the vehicle will be many seconds later
if a particular command is issued now. It cannot "wait until it gets there" to measure its response
because then it will be too late to react.

The solution of this problem is mathematically involved because it involves solution of a coupled
set of eight nonlinear differential equations which form the vehicle state space model. The system
mechanizes these equations in real time. The equations are coupled because:

" position at step i depends on attitude and speed at step i-I
" attitude at step i depends on steering response, propulsion response, and attitude step i-I
" steering response at step i depends on steering response and steering command at step i-I
• propulsion response at step i depends on attitude, propulsion response and propulsion

command at step i-I
" attitude at step i depends on suspension state at step i- 1

7. State Space Terrain Following Model
By solving the equations in their true coupled form, the system can correctly simulate a vehicle
driving along the side of a hill, for example. It correctly simulates the dependence of actual
trajectory on the terrain itself, the speed, the actuator response characteristics, and the initial
conditions.

The basic simulation loop can be written as follows. At each time step:

" simulate suspension - determine attitude from terrain geometry and position
" simLvlate propulsion - determine new speed from command, state, and attitude
" simulate steering - determine angular velocity from steering and speed
• simulate position - dead reckon from linear and angular velocity and time step

A mechanization diagram is shown below for these equations:
termain Vc

state vector
(x,y,z,V,,,,,3) (Y,? 4, ) (Va

, spnsi PopMi+ Steering RDead ..-

Figure 5 - Feedforward Simulator

In the figure, (x, y, z) represents the position of the vehicle in the navigation frame, (0, i,)

represents its attitude in terms of pitch, roll, and yaw angles respectively, V is the vehicle speed
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along the body y axis, a is the steer angle of the front wheels, 0 is the angular velocity of the body
projected onto the body z axis, and the subscripts c and a represent commanded and actual
quantities respectively.

7,2 Reference Points

The positions of distinguished points on the body, called reference points, are maintained in
navigation coordinates throughout the simulation. The kinematics transforms involved in doing
this are documented elsewhere [26]. These points are at the same elevation as the bottom of the
wheels and are positioned at the wheel contact points and the center of the axles. The processing
of the reference points proceeds as follows for each cycle of the simulation:

" convert coordinates from body to nav frame based on the vehicle position and attitude
* replace ueir z coordinates with those of the terrain at the same (x,y)

LR .'

RearC{-I)Vw'"- CF Front

RF

RearSide Front
RearView

x  RF

Figure 6 - Reference Points

All aspects of both system state and hazardous conditions can be computed from the reference
points and the terrain elevation under them. In this way, coordinate system transformation
operations are reduced to an absolute minimum.
7.3 Susiension Model

Using the reference points only, a proper model would:

" compute the elevation "under" each wheel
" compute the deflections of each wheel from the minimum potential energy principle
• compute the positions of three points on the body
• compute the body attitude from these three points

which is a lot of somewhat costly work to do. Therefore, the suspension model is based on:

* a rigid terrain assumption
* a rigid suspension assumption
* a locally planar terrain assumption
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The first assumption results from using the terrain map elevations measured by a sensor when the
vehicle was not loading the terrain. The second occurs because the positions of the wheels relative
to the body are taken as fixed. The third occurs because the elevations under the four wheels are
used in forming two vectors even though they do not necessarily lie on the same plane.

The last problem in the process can be expressed as that of recovering an unknown rotation matrix
from a few points which are transformed using it. The inverse RPY transform was computed in
[26] for this purpose. The displacement transform from body coordinates to world coordinates for
a z-x-y Euler angle sequence can be expressed as:

[Xn [r1l r12 r13 xb [ (cwc - syss ) -sAcO (clvs + sA1s0c4)l Xbl

Yn= r21 r22 r23 Yb = (sc +cWss0) cicO (sWs--cjs(c)| Yb

[Z5  [r3 l r32 r33J zbJ -cos so c~c LzbJ

Yaw and pitch can be determined from any vector known to be aligned with the body y axis:

v = atan2 (r22 ,-r 1 2 )
0 = atan2 (r32, -rl 2 sW + r22cW)

Roll can be derived from the world coordinates of a vector known to be aligned with the body x
axis.

1 = atan2(sO[-rllsv+r21 cV] -r 31 cO, (rlc'V+r 21 s'V)) J
The above equations are an exact inverse kinematic solution. However, the system makes a valid
small pitch assumption currently in order to reduce the trigonometric computations. The vector"
are formed from the reference points. The algorithm is simply:

/*

** Simulate Suspension
*/

zleft = (lf[z] + lr[z]) / 2.0;
zrght = (rf[z] + rr[z]) / 2.0;
zfrnt = (rf[z] + lf[z]) / 2.0;
zrear = (rr[z] + lr[z]) / 2.0;
z = zrear + tireradius;
pitch = atan2(zfrnt - zrear)/wheelbase;
roll = atan2(zleft - zrght)/width;

Using a linear deflection model, it can be shown that, since strain energy is squared in strain, the
minimum potential energy principle of solid mechanics implies that a least squares solution to the
deflections of the four wheels of an independent suspension is also the solid mechanics solution.
The simple suspension model seems to work well enough as it is so a more refined model was not
implemented. Such a model however, would permit the representation of suspension overextension
as a hazard. Also, the deviation of the four wheel contact points from a plane is an equivalent model
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under a rigid suspension assumption and this would be simpler to implement.

7. Proulsion Model
Propulsion is currently modelled as a proportional controller with gravity compensation 5. Under
an assumption that the torque at the wheels can be directly actuated and that the terrain can generate
any necessary shear reaction (no slip) Newton's law can be written along the body y axis as
follows:

P-WsinO = Ma

P0 - - gsinO acmd - gsinO

P

Figure 7 - Propulsion Plant Model

which gives the plant model. A proportional controller using velocity feedback is configured as in
the following block diagram6 :

gsinO

cmddeay afcmd[

Vrest

Figure 8 - Propulsion Servo

The inverse of the proportional gain Kp is the time constant. A time constant of 5 seconds
corresponds to the generation of 0.1 g command for a 5 m/s speed error. A limiter is added to reflect
the fact that the output torque has some limit. One way to compute this limit is to choose a pitch
angle corresponding to some grade that is the highest grade that the vehicle can climb. Under this
model, the computer algorithm is the finite difference version of the system differential equation,

5. This model is similar to the JPL speed controller except that throttle is actuated and not torque.
6. If, like most of us, the reader has forgotten Laplace Transforms, I/s is an integral and s is a derivative.
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which is simply7:
/*

** Simulate Propulsion
*!

now = read&clocko;
vdelay = queue-lookup(propqueue,now - prop-delay);
verr = vdelay - vres;
acmd = verr / prop-timeconstant;
if (fabs(acmd) > amax) acmd = amax * acmd / fabs(acmd);
ares = acmd - g * sin(pitch);
vres += ares * dt;

This model has several advantages over an ideal one. It will correctly cause the simulated vehicle
to take several seconds to respond to a step input command and it will even cause the simulated
vehicle to back up on a steep grade and generally slow down or speed up depending on the grade.

75 Steering Model

The steering model is involved because it must account for the nonlinear relationship between
curvature and steer angle. This model is also a primary area of coupling between speed and attitude
rate, so it is one of the most important elements of the model. The bicycle model of the steering
kinematics is given in [26]. Typically, the steering wheel itself is actuated, so the loop must be
closed back at the steer angle. This assumes only that the steering wheel to steer angle transform
is linear. Either position or speed could be the controlled variable, but a proportional position loop
is assumed8. Both the position and the speed are limited9 .The complete dynamics can be expressed
with the following block diagram:

"cmd do. d e lay  aXerr 1

Figure 9 - Steering Servo

7. If we distinguish control algorithms from complete controllers, many actuator control algorithms can be
implemented in just a few lines of code. The above situation is the rule, not the exception. Code is provided
in order to illustrate that however sophisticated dynamic models may sound, implementing them is easy.
8. At this moment, a position loop is used because a speed loop requires speed feedback which is not available
on some vehicles. It could be generated internally by differentiating the position feedback, but the speed limit
is considered to be the overriding element of the delay anyway.
9. There may also be a trapezoidal command velocity profile. This amounts to an acceleration limit on the
command.
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Again the coding is straightforward:

/*

** Simulate Steering Dynamics
*/

now = readclocko;
alpdelay = queue-lookup(steerqueue,now - steer_delay);
alperr = alpdelay - alpres;
if (fabs(alperr/dt) > alpdotmax)
alperr = alpdotmax * dt * alperr / fabs(alperr);

ares += alperr;

These few lines of code make an enormous difference in the high speed stability of the system.

7& Dead Reckonin
The 3D dead reckoning equations also form the system model in the Kalman filter which is
documented elsewhere [30]. The attitude rate about the body y axis is available from the
instantaneous velocity and the instantaneous steer angle (or curvature) as follows:

do3 [a ( 1 ds = I (t) ds

dt I L at(t)]T

7.7 Sensor Head Model
A controllable pan/tilt sensor head is modelled by two differential equations which are similar to
those used for the other actuators. It is likely that the system would not have access to speed
feedback, so again, a position loop is used to model the dynamics. A loop which is identical to the
steering model can be used to reflect the limited angles of excursion and the limited maximum
s x. For the tilt (or pitch) axis, the servo would be configured as follows:

!cmd delay Oer

Figure 10- Head Servo
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8. Tactical Planning
The system adopts the basic assumption that all hazardous conditions can be computed from the
reference points. Hazards are represented as sampled time signals which are parameterized by the
commands to which they correspond. At any point in forward projected time, the system is
designed to be robust to the absence of information because the sampling and the occlusion
problems are intrinsic and inevitable.

L Temnoral Stat Internolatin
Field testing of the system on typical rough terrain indicates that, if occlusions are distinguished
from poorly sampled regions of the environment, and the need for sophisticated terrain map
interpolation is questionable. Specifically, the degree of undersampling depends on the local
incidence angle of pixels to the terrain and the need for interpolation directly implies that the terrain
is mostly fiat anyway. The reverse argument is more compelling. If a small vertical step in the
terrain exists, then it must span several pixels due to its near normal incidence. Therefore, it cannot
be undersampled.

These observations imply that it is unnecessary to interpolate an entire terrain map before it is used
for planning computations. It can be done on thefly, and more importantly, it can be done on the
vehicle state vector. The state vector alone supplies the information necessary to propagate the
system state forward in time, and the terrain contact constraint can be modelled as a "disturbance"
which modifies the vehicle attitude whenever the terrain under the wheels is known (which, in
practice, is almost always).

The interpolation algorithm used in the system is an interpolation of both the state vector and the
hazard signals in time, rather than an interpolation of the terrain map in space.

LZ Hazard Identifiaim
Three principal forms of hazards are incorporated:

" unknown terrain
* collision of the terrain with the body
" static instability

82.1 Unknown Terrain

Unknown map cells may arise from undersampling or terrain self occlusion. An overall
information density merit is computed for each candidate command which is based on the number
of wheel elevations which are known at each time step.

8.2.2 Terrain-Wheel Collision

Wheel collision is computed as the slope of the elevations under each wheel as the body is
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propgated forward.

zi - z I

merit (i) =

1 i+l -- lA - max

Figure 11 - Wheel Collision

In practice, this signal can be noisy if the sensor cannot supply the angular resolution and relative

range accuracy necessary. At times, it is not used at all.

&2.3 Terrain-Body Collision

Body collision is computed as the lost volume under the body normalized by the area under the
body, so it is an expression of the average height under the body. The result is normalized by the
number of map cells which were actually known.

*de 1
view n z

merit (i) _h

max

Figure 12 - Body Collision

&2.4 Static Stability

Static stability measures the proximity of the vehicle to tipover. The static stability margin can be
expressed as the remaining angle between the gravity vector and the support polygon formed by
the wheel contact points (which is a rectangle in this case). Graphically, the margin is the minimum
distance to any side of the support rectangle normalized by the height of the center of gravity above
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the terrain.
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Figure 13 - Static Stability

The margin can be expressed as the maximum of the tangent of simple approximations to roll and
pitch normalized by some maximum. The distinction between measurement as an angle or its
tangent is irrelevant for small angles.

One of the implications of this model is that the vehicle will turn into a steep grade so as to increase
the stability margin. The system actually computes pitch and roll margins individually, and
performs the maximum outside the hazard evaluator. This is a measure used to permit easy
debugging. The system can navigate successfully over smooth terrain based on this hazard alone.

3 Hmard Re ntaon
In general, each hazard is represented on some normalized scale where the maximum value
indicates certainty of danger and the minimum value indicates certainty of safety. A typical hazard
signal might look like the following:

danger

time

Figure 14 - Hazard Signals
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L.4 Hm, [Arbitration
Conceptually, the evaluation of hazards amounts to, first, the generation of a 3D field of the form
neris(hazar4omman4dn) because safety is different for each command, different for each
hazard, and a time signal. The obstacle avoidance hazard arbiter conceptually integrates this 3D
field into a single decision. The first step of the process is to collapse the time dimension. This is
done by computing the signal norm as follows:

la

merit = ( (merit (i)) a)
i

for some power a. In practice, however, a straightforward maximum was found to produce
acceptable results. This step reduces the decision field to merit(hazardcommand).

The next step is to collapse the hazard dimension. Hazards are considered independent because, for
example, body collision is completely irrelevant to static stability. Therefore, a straightforward
maximum applied across this dimension gives the worst unsafe condition for all dimensions of
safety considered.

The final step is to reduce the command dimension, and this has been discussed in the context of
joint arbitration of tactical and strategic votes. However, before the tactical vote vector is passed to
the arbiter concerned, it is sometimes smoothed by Gaussian filtering in order to increase
reliability. The idea is that, because the environment exhibits a degree of smoothness, it is
appropriate at times for poorly rated trajectories to degrade the ratings of their spatial neighbors.
In this manner, the impact of errors in both feedback and actuation will be less relevant because
this mechanism will cause the vehicle to give obstacles a wide berth. At times, this mechanism is
disabled depending on the spacing of the candidate trajectories investigated.
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9. Sensor Stabilization and Pointing
Sensor head control algorithms are provided that incorporate both somatic and environmental
feedback. These algorithms can also be used to control the field of view of real time programmable
sensors.
9.1 Azimuth Controllers

The pan axis must move with the vehicle and because it is mounted to the vehicle, any response on
this axis is useful.

The first azimuth controller is the steering regulator. This controller generates pan commands
which match the commands to the steering wheel. It would have been possible to servo to the
steering feedback, but that option is considered to incorporate a delay and provide no benefit in
return.

The second azimuth controller is the detection zone tracker. The steering feedforward simulator
provides an intelligent basis for pointing the pan axis because the centroid of the region which is
reachable by the vehicle can easily be computed. This controller computes the average angle
subtended at the initial position by the response curve endpoint. In a sentence, this servo looks
where the vehicle is going.

92 Elevation ControHers

The tilt axis must move against the vehicle and therefore must be able to respond significantly
faster that the vehicle itself in order to be of any use.

The first elevation controller is the pitch regulator. This servo drives the elevation degree of
freedom to the opposite of the vehicle pitch. Note that if the vehicle pitch is indicated by an inertial
sensor, the servo gives effective inertial stabilization of the head without the cost of extra
gyroscopes.

The second elevation controller is the range window tracker. In rough terrain, the field of view
can only be pointed by a loop closed around the perception system because the body attitude and
terrain roughness affect the projection of the field of view onto the groundplane and only the high
level control loop knows this information.

The adaptive sweep algorithm provides an excellent measure of the deviation of the sensor tilt from
the ideal as the average deviation of the range window from the vertical center of the image. This
error signal is used to drive the head, and in the process, a rough terrain adaptive sensor head
controller results. This controller provides impressive stabilization on rough terrain and it can also
drive a roll axis with little modification.
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10. Speed Planning
Just like everything else, the speed which should be commanded of the vehicle depends on the local
environment. It makes sense, for instance, for the vehicle to slow down when it encounters
challenging terrain and likewise increase speed when benign terrain is encountered.

The motivation for speed planning is that there is reason to expect that

* there is a way to measure system robustness
" there is a way to relate robustness to speed in rough terms

The principle used for a speed planner is to close a proportional control loop around the average
predicted merit of all candidate commands because this average merit is low in dense hazard
environments and high in regions free of hazards. This principle is complemented by the fact that
higher speeds tend to lead to reduced maneuverability and hence lower reliability for the same
local terrain. That is, robustness can be altered in a small region by adjusting speed alone.

Many aspects of performance are implicitly figured in the algorithm. For example, occlusion,
resolution, map quantization noise, etc. are all implicitly expressed in the hazard signals, so the
system will eventually reach equilibrium with respect to the most constraining sensor characteristic
and an appropriate speed will emerge naturally.

When a planner gets confused it tends to stay confused for a time and when it is relatively stable,
it also tends to stay stable. This implies that there is a low frequency component to system
robustness which is long enough in time constant to exceed the vehicle response limits. Hence, a
vehicle may be able to respond fast enough to change things before its too late. It should also be
noted that the tactical controller is designed so that a panic stop (slamming on the brakes) is always
guaranteed to avoid vehicle damage. The speed planner uses more graceful measures to improve
performance.

A simple loop is configured as follows:

Mcmd

:K p] vehicle

Mret

Figure 15 - Merit Servo

This loop is implemented with a time constant that is relatively large so that the speed loop will
respond only to the low frequencies in the overall merit. The results for a run of the system in a
dense obstacle field at high speed are indicated below.

The vehicle was driven in simulation for 500 cycles at a nominal speed of 4.5 m/s at 3 Hz cycle
time. When speed planning was on, the excursion was 703 meters versus 687 meters when it was
off. The planner was considered to have failed when the merit fell below a threshold of 0.4 With
speed planning on, "failure" occurred 4% of the time, whereas it occurred 6% of the time with
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Speed Planning Results
4.5 m/s nominal speed

Speed Planning Off Speed Planning On
1.0
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Figure 16 - Performance of Speed Planning

speed p annig ott. More important, the senousness of the tailures wit pFianning off were much
worse than those with planning on. The system attempts to maintain a constant merit of 0.4 when
the loop is closed. The figure shows that the deviation from 0.4 is much higher in the left figure.
The peaks and valleys are wider in the left figure indicating sustained periods of confusion. In plain
terms the algorithm makes it possible to drive farther more robustly.

An extra benefit of the speed planning loop is that it will automatically back the vehicle up and
drive off in another direction when a panic stop is issued. The path planner supports this as well
because it plans correctly for negative velocities, so backs up "smartly" avoiding obstacles until a
new alternative presents itself.
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11. High Speed Autonomy as an Optimal Control Problem
This section casts the problem of high speed autonomy as an optimal control problem. The lowest
level element of the system is the control laws. The control laws are responsible for coordinated
control of all actuators. The control laws are implemented in a tightly coupled hierarchy. At this
level of conceptualization, the system can be viewed as a multi-input, multi-output, feedforward
state space controller.

11. State Space Controller
For a linear system 10, the conventional state space model of a system is the venerated two matrix
equations:

x=Cx+Du

Note in particular that the first equation is a differential one. The command vector includes
vehicle steering and speed as well as demand signals to any sensor heads. The state vector X
includes the vehicle steering, speed, and the state of motion of the vehicle body and the sensor
heads11. The output vector y can be any function of both state and inputs, but in our case, it can
be considered to be the state itself (so C is the identity and D is zero). These equations are often
indicated in a block diagram as shown below: +

Figure 17 - Linear System Block Diagram

In this model so far, the system transition matrix of the last section can be identified directly with
the A matrix and the equation which employs it to propagate the system state forward in time is
the integrator. The transition matrix includes the steering model and the propulsion model. The B
matrix can be identified with anything which modifies commands generated by the system before
they get to the physical hardware. That is, the B matix can be identified directly with the delay
queues.

10. Our system is not linear. No real system is perfectly linear. Consider this a model for now, and the validity
of the model to be an open question.
11. The state vector includes more information than the commands because the number of state variables is
dictated by the order of the differential equation being modelled. The system equation is a matrix equation,
so its order is the dimension of the A matrix, and this need have no relationship to the length of u. This cor-
responds to the fact that every integral requires an initial condition. On a conventional automobile the com-
mand vector u is of order 2 whereas the state vector may have ten or more elements.
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11. Hard Model
Sometimes, it is useful to further distinguish the signals going to the plant from the information
which is ultimately of interest. In our case, the primary quantity of interest is vehicle safety. This
can be indicated with a reference input or demand vector 1. Also, there may be quantities which
influence the state of the system over which there is no control at all. Let these disturbances be
called jid. Disturbances can be placed anywhere that makes sense in the diagram and they may or
may not be modelled. Further, the C matrix can be reintroduced and the output considered to be the
safety of the vehicle expressed in terms of the hazard signal vector. Our system model has now
become:

lHd

Figure 18 - State Space Model

where a single box for the state space model S has been generated by grouping certain elements
together. Such a system implemented without feedforward would be a regulator which attempts to
keep the hazard vector at 0.

The disturbances can be considered to be anything that affects the system but that is generated
outside the system. In our case, the requirement that the vehicle remain on the terrain surface arises
from the fact that the terrain is incompressible (by assumption) and it generates forces that prevent
the vehicle from sinking. Thus, the disturbances can be identified directly with the suspension
model. The output vector is the hazard signal vector and the C matrix is the hazard evaluation
functions which map vehicle states and the terrain geometry onto estimate of hazards. Notice that
the hazards are time signals and that there are many kinds. Each kind of hazard is one element of
the output vector.

This model maps very directly onto the tactical controller. Other control loops can be considered
to be subsumed in the diagram as well. Sensor head control is a regulator where the reference input
is the deviation of the range window from image dead center. The strategic controller is a regulator
which attempts to maintain the heading error against the global path at zero. A complete diagram
is far too detailed to draw because:
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* the state vector is of order close to 10
" many of the matrices are divisible into blocks
" coordinate system transforms are complicated and are a major source of coupling and

nonlinearity.
. Feedforward Optimal Controller

Feedforward is employed for two distinct reasons. First, it imparts stability to many of the
algorithms - particularly the strategic controller and the tactical controller12. Second, the process
by which safety is predicted is also a feedforward process.

The system attempts to guarantee safety by predicting into the future the relationship between
future safety and current command options. Then it acts now based on future consequences. It does
this by using a state space simulator. This feedforward element can be represented by duplicating
the state space model and indicating that it is an estimate with a super hat diacritical mark. The fact
that an optimal trajectory is chosen can be represented by replacing the summing point with a more
complex minimum transformation:

0 vehicle

Figure 19 -Control Laws

system
model

The state space model maps easily onto the tactical controller. The tactical controller is a kind of
suboptimal controller which attempts to minimize the norm13 of the hazard vector. This is
guaranteed safety again in contrr"s language.

12. It has not been mentioned yet, but feedforward prevents "waffling" in the steering arbitrator because once
a slight turn is commanded once, it affects all downstream computations by biasing all subsequent decisions
to reflect the distance the steering wheel turns for that cycle. Each cycle's output is a partial commitment, so
the tactical controller can only sit on the fence with respect to a particular obstacle for one cycle. Feedforward
leads to a more confident controller because it recognizes when a partial commitment has been made to turn
in a certain direction.
13. The norm is computed by integrating first over time and second over the dimensions of hazard space.
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Formally, the system is a suboptimal solution to the following optimal control problem:

min[L(Y(t))] = (t) 2 Y(t) 2

subject to: t=Ax+Bu

where A models the steering and propulsion dynamics, B models the communications delays, and
C models the terrain contact constraint as well as the mapping from system state onto hazards. The
rms time integral of the hazards is generalized to the signal a norm given by:

I/a

Yi(t) 2 Yi M 0

and the vector length is generalized to an a norm over hazard space:

1/a

Thc f-mal solution tc in optimal control problem is obtained from the Pontriagin Maximum
Pr , (of wm.'c- -, nore familiar calculus of variations is a special case). In general, the
opuV: introl pr,',_:m generates a set of simultaneous partial differential equations with
boundary conditions which are very difficult to solve in real time.

The system model amounts to a complicated differential equation constraint. The satisfaction of
this constraint is generally very difficult to achieve. The set of trajectories which satisfies the
system model equations and which maintain the vehicle in contact with rigid terrain is called, in
optimization lingo, the feasible set.

The system satisfies this constraint by construction through feedforward. The inverse system
model in the previous diagram is never evaluated explicitly - the system simply remembers the
correspondence of commands to response trajectories and inverts this list of ordered pairs. In this
manner, the system plans in actuation space.

The system solves the optimization problem, effectively, by sampling the feasible set of trajectories
at some practical resolution that ensures adequate coverage of the set, and then by choosing the
trajectory with the best value of the functional [L (Y (t))].
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12. Discrete Time Nonlinear Model
The last section gave a linear systems model of a MIMO system. The system model actually used
is a nonlinear model, but it can still be expressed as a set of matrix equations if the matrices
themselves are allowed to vary with the state vector.

1. State Vector

The state vector includes the position and attitude of the body and the linear velocity along body
y and the angular velocity around body z.

x = [xy z VO T

122 Cm and Vector

The command vector includes the commanded speed and commanded "yawrate":

T
u = [VC OcT

12. System Model

The system model is based on a low dynamics assumption. This is the assumption that velocity
can be considered constant for a small period of time. The model is given below:

-VscO
X X

y y VcAcO

z z Vs0
V V 0
O =o + Os dt

-IOtoc,
'V Joc /c0

-3 K+1 -3 K 0 K

The terms in the bottom of the vector account for the nonlinear dependence of the attitude rate on
the attitude of the body. Angular velocity kinematics are given in [26]. This model will correctly
account for motion out of the plane even so far as to correctly turn the vehicle around the body z
axis instead of the gravity vector. This aspect of the model can be expressed as a nonlinear
transition matrix, if desired.
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12. Forcing Function and Ackerman Kjinematics

The relationship between the yawrate and the steer angle is:

CV = tanL

p~v L
If we ignore the nonlinear limiters for the purpose of illustration, and model the actuator loops as
first order systems, the relationship between the command vector and the state derivative vector
can be written as:

I '] ~l IKprop (Vcmd -V V

= [ +[tan [Ksteer ( rcm d- a)] Vldt
OK+ I K "L-

STerrain Contact Constraint
Under a small pitch assumption, the terrain contact constraint alters the attitude each cycle, it can
be written as:

K1 1 1 1 [Zlf
I~ www Izr

-Wl W V W Zr

=2.6 Hazard Vector
The hazard vector can be written as a 4 vector which includes the wheel collision, body collision,
and stability margin:

The wheel collision output relationships are:

Zlf Zlf

-Y _ 1 Zrf _ Zrf

YwcK z Z r  Zlr
A() max

A K o f K- i
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The static stability output relationships are:

-1-100- ZIf
2 00 1 -1 ZrfYw K -- o o 1 I

0 1 - 1 0 i I K

2. Implementation in Special Purpose Hardware
The entire system including perception, planning, and control, runs in less than 50 msecs on a
SPARC 10 platform and this is already a very high cycle rate for the entire perceive-think-act loop.
However, higher performance can be achieved by porting the system to special purpose hardware.
In principle, the control laws are implementable solely in terms of matrix algebra, trigonometricfunctions and a few signal operators - because they really are just one big differential equation. For
example, a graphics rendering pipeline would perform all of the necessary geometric
transformations on image sensory data to generate the map data structure. The system model isliterally a discrete matrix differential equation, and the hazard model can be implemented as a
matrix. The arbitrator could then be implemented in a digital signal processor.
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